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Exotic group algebras

Given a locally compact group G , then the C ∗-algebras C ∗r (G )
defined by the regular representation of G over L2(G ) and C ∗(G )
defined by the universal representation of G are of special interest.

In his seminal 1964 paper P. Eymard noted that there are algebras
in between. Until recently there have been little interest in studying
these algebras, but work of Brown-Guentner caught our interest.

For quantum groups similar questions also was studied by
Bedos-Murphy-Tuset and Kyed-Soltan. (And maybe others?)
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Exotic group algebras

So we shall look at C ∗-algebras B between C ∗r (G ) and C ∗(G ), i.e.

C ∗(G )
q

&&
Λ=regular representation

��

B = C ∗(G )/I

xx
C ∗r (G )

where I = ker q is an ideal in C ∗(G ).
We call B exotic if

{0} ( I ( ker Λ.
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Fourier-Stieltjes algebra

We shall also need the the dual spaces, the Fourier-Stieltjes
algebra B(G ) = C ∗(G )∗, Br (G ) = C ∗r (G )∗ and

E = B∗ = I⊥ = {ϕ ∈ B(G ) | ϕ(I ) = {0}}.

These are G -invariant subspaces of B(G ) with

Br (G ) ⊂ E ⊂ B(G ) ⊂ UCB(G ).

It seems hopeless to look at all these spaces.
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Look at the diagram (for G discrete)

C ∗(G )
δG //

λ

��

q

!!

C ∗(G )⊗ C ∗(G )

λ⊗id

��

q⊗id

((
C ∗(G )/I

δ //

~~

C ∗(G )/I ⊗ C ∗(G )

vv
C ∗r (G )

δnG

// C ∗r (G )⊗ C ∗(G )

Here δG and δnG sends g to g ⊗ g .
Then I ⊂ ker λ, and:

Theorem

A large quotient C ∗(G )/I carries a coaction if and only if the
annihilator E = I⊥ in the Fourier-Stieltjes algebra B(G ) = C ∗(G )∗

is a G-invariant ideal.
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Large ideals

Thus, large quotients C ∗E (G ) = C ∗(G )/⊥E of C ∗(G ) carrying
coactions are classified by large ideals E of B(G ), i.e., G -invariant
weak*-closed nonzero ideals (which then automatically contain the
reduced Fourier-Stieltjes algebra Br (G ) = C ∗r (G )∗).

It appears that there are lots of these “exotic ideals”:

Definition

Let Ep be the weak*-closure in B(G ) of span{P(G ) ∩ Lp(G )},
where P(G ) denotes the set of positive type functions on G .

Theorem

Ep is a large ideal in B(G ).
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Theorem (Godement, Carey)

For 1 ≤ p ≤ 2, Ep = Br (G ).

Theorem (Higson, Okayasu, Ozawa, Brown-Guentner)

For 2 ≤ p < q <∞ and G = F2, Ep 6= Eq.

Theorem (Wiersma)

For 2 ≤ p < q <∞ and G = SL(2,R), Ep 6= Eq.

Note: For semi-simple Lie groups (square) integrable
representations are of special interest.
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How do we get large ideals in B(G )?

Theorem (Brown-Guentner)

Let D be G-invariant ideal of CB(G ).
Then E = w∗-closure of span{P(G ) ∩ D} is a large ideal in B(G ).

Question

Do all large ideals in B(G ) arize this way?
If so the correspondance will not be 1-1.

Example (Haagerup)

The Rajchman algebra B0(G ) = B(G ) ∩ C0(G ) is a norm-closed
G -invariant ideal in B(G ). Let E0 be its weak*-closure. Then G
has the Haagerup property if and only if E0 = B(G ).
For G = F2, B(G ) = E0 6= Ep.
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Bizarre groups

So in general there seems to many large ideals in B(G ).

However, could the opposite be true, are there non-amenable
groups G with no exotic large ideals in B(G )?
(Question raised by Tim De Laat, Copenhagen 2019.)
In particular can one have

B(G ) = C1⊕ Br (G )?

We call such a group bizarre.

Conjecture

There are no bizarre groups.
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Crossed products

Start with an action α of a locally compact group G on a
C ∗-algebra B. We can then form the full crossed product

Afull = B oα G

and the reduced crossed product

Ared = B oα,r G ,

but we should expect interesting algebras in between.
To make notation a little simpler we now assume that G is a
discrete group.
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Full and reduced crossed products

Then

Afull = B oα G = span{π(b)Ug | b ∈ B, g ∈ G}

where π is a representation of B and U a unitary representation of
G satisfying

Ugπ(b)Ug−1 = π(αg (b))

with (π,U) universal.

If B ⊂ B(H) we have

Ared = B oα,r G = span{π(b)λ(g) | b ∈ B, g ∈ G}

where π(b) and λ(g) are operators on L2(G ,H) given by

[π(b)f ](x) = αx−1(b)f (x) and

[λ(g)f ](x) = f (g−1x).
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Dual coactions

In both cases we have maps

α̂red : Ared 7→ Ared ⊗min C
∗
r (G )

given by

α̂red [π(b)λ(g)] = (π(b)⊗ 1)(λ(g)⊗ λr (g))

and
α̂ : Afull 7→ Afull ⊗max C

∗(G )

given by
α̂[π(b)Ug ] = (π(b)⊗ 1)(Ug ⊗ g).

α̂red is called the dual (regular) coaction of the regular crossed
product and α̂ is called the dual R-coaction of the full crossed
product. (R is for Raeburn.)
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Coactions for discrete groups

These are special cases of the following

Definition

A (regular) coaction of a C ∗-algebra A is an injection
δ : A 7→ A⊗min C

∗
r (G ) satisfying

(δ ⊗ i) ◦ δ = (i ⊗ δr ) ◦ δ

where δr (λr (g)) = λr (g)⊗ λr (g).

Definition

An R-coaction of a C ∗-algebra A is an injection
δ : A 7→ A⊗max C

∗(G ) satisfying

(δ ⊗ i) ◦ δ = (i ⊗ δG ) ◦ δ

where δG (g) = g ⊗ g .

(R is still for Raeburn.)
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Very rough statement of Baum-Connes Conjecture

Conjecture (Baum-Connes)

If α is an action of a locally compact group G on a C ∗-algebra B,
then the K-theory of the reduced crossed product B oα,r G is
isomorphic to the “topological K-theory”.

Problem

The topological K-theory is an exact functor of actions, but the
reduced crossed product is not. (Gromov)
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Crossed-Product Functors

Buss, Echterhoff, and Willett have studied certain properties of
crossed-product functors.

A crossed product is a functor

A 7→ Aoµ G

from C ∗-systems (A,G ) to C ∗-algebras together with natural
transformations

Aomax G → Aoµ G → Ao red G

restricting to the identity map on the dense subalgebra(s) Ao algG .
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Exact and Morita Compatible Crossed-Product Functors

A crossed-product functor µ is exact if the sequence

0→ I oα,µ G → Aoα,µ G → B oβ,µ G → 0

is short exact whenever 0→ (I , α)→ (A, α)→ (B, β)→ 0 is short
exact.
The full crossed product is exact, but the reduced crossed product
is not, unless (by definition) G is exact.

A crossed-product functor µ is Morita compatible if roughly
speaking

Aoα,µ G ∼M B oβ,µ G

whenever (A, α) ∼M (B, β) equivariantly.
Both the full and reduced crossed products are Morita compatible.
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BGW solution

Theorem (BGW)

There exists a unique minimal exact and Morita compatible
crossed product functor ε.

Conjecture (BGW)

For any action (A, α,G ), the ε-assembly map

µε : K top
∗ (G ;A)→ K∗(Aoα,ε G )

is an isomorphism.
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KLQ program

Require the crossed product B oα,σ G to have a version δσ of the
dual coaction α̂, and find a coaction functor τ such that

(B, α) � full //
�

σ
''

(B oα G , α̂)
_

τ

��
(B oα,σ G , δ

σ)

commutes. Then do everything in terms of coaction functors.

So our philosophy is that to every crossed product functor there is
a coaction functor making the above diagram commute.
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Coaction Functors

Definition

A coaction functor is a functor

τ : (A, δ)→ (Aτ , δτ )

on the catgory of coactions together with natural transformations
satisfying ....

Theorem (KLQ)

There is a unique minimal, exact and Morita compatible coaction
functor.
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Exotic coactions by E -ization

Let E be a large ideal in B(G ). The E-ization coaction functor
τE : (A, δ) 7→ (AE , δE ) is defined by letting AE be the quotient of
A by ker(id⊗ qE ) ◦ δ:

A
δ // A⊗ C ∗(G )

id⊗qE // A⊗ C ∗E (G )

and letting δE and φE be the associated quotient maps.

Example

τBr (G) is normalization (A, δ) 7→ (An, δn)

τB(G) is the identity functor (A, δ) 7→ (A, δ)

(Maximalization is not τE for any E .)
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E -crossed Products

For any action (A, α,G ),

(Aoα,full G )E = Aoα,E G and α̂E = α̂E .

This way we get an exotic crossed product functor

µE = τE ◦ full.

comming from E by composing the full crossed product functor
with τE .
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Coaction properties of E -ization

Theorem

Every τE is Morita compatible.

Theorem

The coaction functor τ = τE has the ideal property, i.e. given a
coaction (A, δ) and a strongly δ-invariant ideal I , then

ιτ : I τ → Aτ is injective.
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More coaction properties. (Exactness)

(The maximalization functor is exact. )

In general τE is not exact.

If τ is exact, then τ composed with the full crossed product will be
an exact crossed-product functor.
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Exact Large Ideals

Definition

A large ideal E is called exact if τE is exact.

Theorem (KLQ)

If E and F are exact large ideals, then so is E ∩ F .
In particular E ∩ F = 〈EF 〉, the weak*-closed linear span of the set
EF of products.

Example

Let Ep be the weak*-closure in B(G ) of span{P(G ) ∩ Lp(G )},
then for for every p > 2 and G = F2 we have

〈E 2
p 〉 ⊂ Ep/2 ( Ep.

So Ep is not exact.
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How to get more exact crossed products?

[Baum-Guentner-Willett]: Fix an action (C , γ) of G . For any
action (B, α) of G , we get an action α⊗ γ on B ⊗max C by
(α⊗ γ)g = αg ⊗ γg .
The homomorphism

B → B ⊗max C given by

b 7→ b ⊗ 1 (require C unital)

is α− (α⊗ γ) equivariant, so passes to the crossed products:

φ : B oα G → (B ⊗max C ) oα⊗γ G .

Definition (Baum-Guentner-Willett)

The C-crossed product is

B oα,C G = φ(B oα G ).
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Has good properties

Theorem (Baum-Guentner-Willett)

The C-crossed product is an exact functor.

Theorem (Buss-Echterhoff-Willett)

There is a minimal C-crossed product given by

(C , γ) = (UCBl(G ), left translation).
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Motivation

Question (Baum-Guentner-Willett)

Maybe this is in fact the smallest exact crossed product functor?

(Still open.)
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What is the corresponding coaction functor?

Main idea:

Replace (C , γ) by a fixed coaction (D, ζ)

Construct a coaction functor

(A, δ) 7→ (AD , δD)

such that
1 (B oα G )CoγG = B oα,C G .
2 (A, δ) 7→ (AD , δD) is an exact coaction functor.
3 The smallest coaction functor of this type is for

(D, ζ) = (UCBr (G ) ort G , r̂t),

i.e., for every equivariant coaction (D, ζ) there is a canonical
surjection

(AD , δD)→ (AUCBr (G)ortG , δUCBr (G)ortG ).
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Discrete G

We completed this case, mainly using Fell bundles.
Main idea:

Replace (C , γ) by a fixed coaction (D, ζ)

Construct a coaction functor

(A, δ) 7→ (AD , δD)

such that
B oα,C G = (B oα G )D

when (D, ζ) = (C oγ G , γ̂).

29 / 47



Beginning of the construction

Since G is discrete, a coaction (A, δ) is just a Fell-bundle structure
(or a graded algebra over G ):
A = spans∈G As where AsAt ⊂ Ast and A∗s = As−1 .

Definition

The G-balanced tensor product of coactions (A, δ) and (D, ζ) is
the coaction δ ⊗G ζ given by the Fell bundle

{As ⊗max Ds}s∈G

where for As ⊗max Ds we take the closed span in A⊗max D.
This gives a coaction on the C ∗-algebra

A⊗G D := span
s∈G

(As ⊗max Ds) ⊂ A⊗max D.
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Finish the construction

We still need a homomorphism

(A, δ)→ (A⊗G D, δ ⊗G ζ).

For this, we further require the coaction (D, ζ) to be a dual
coaction so

D = C oα G = span{π(c)Vg | c ∈ C , g ∈ G}

where π is a representation of a unital C ∗-algebra C and V a
unitary representation of G satisfying

Vgπ(b)Vg−1 = π(αg (b)).

Then As ⊗max Ds = As ⊗max CVs and we define the
homomorphism on the fibers As by

as 7→ as ⊗ Vs .
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It all works

Now define

AD = image of A in A⊗G D

δD = restriction of δ ⊗G ζ to AD .

Theorem (KLQ)

1 (B oα G )CoγG = B oα,C G.

2 (A, δ) 7→ (AD , δD) is an exact coaction functor.

3 The smallest of this type is for

(D, ζ) = (`∞(G ) ort G , r̂t),

i.e., for every equivariant coaction (D, ζ) there is a canonical
surjection

(AD , δD)→ (A`
∞(G)ortG , δ`

∞(G)ortG ).
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To-do list

Question

1 Is this the minimal exact coaction functor?

2 What about locally compact G?
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General case — need a new plan

For G non-discrete, coactions are in general not given by Fell
bundles, a coaction is a homomorphism

δ : A→ M̃(A⊗ C ∗(G ))

where unadorned ⊗ means minimal C ∗-tensor product, and for any
C ∗-algebra C

M̃(A⊗ C ) = {m ∈ M(A⊗ C ) : m(1⊗ C ) ∪ (1⊗ C )m ⊂ A⊗ C}.

New technique: promote the coactions so that they go into
maximal (rather than minimal) tensor products:

δ : A→ M̃(A⊗max C
∗(G )).

(So maybe Raeburn was right all along. . . )
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The plan

Require D = C oα G with 1 ∈ C , so we have a δG − ζ
equivariant homomorphism V : C ∗(G )→ D.

Consider the composition

A
δ //

QD &&

M̃(A⊗max C
∗(G ))

id⊗V
��

M̃(A⊗max D)

Prove that the image AD = QD(A) carries a quotient δD of δ.

Verify the 3 properties:
1 recover C -crossed product,
2 get an exact coaction functor, and
3 identify smallest one.
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Our result

Theorem (?(KLQ))

A→ AD is an exact coaction functor which recovers the C-crossed
product. The smallest coaction functor of this type is for

(D, ζ) = (UCBr (G ) ort G , r̂t).

At least we belive it is true, but the general case is not so smooth,
we have to use exactness of the C -crossed product to show that
our D-coaction is exact, while we wanted it the other way as in the
discrete case.
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E -ization vs Tensor-D

Assume G discrete. We have D = C oα G so there is a map
V : C ∗(G )→ D, and E = kerV⊥ is a large ideal with
V (C ∗(G )) = C ∗E (G ).

E -ization (R-version) sends A into A⊗max C
∗
E (G ).

while Tensor-D sends A into
A⊗G D := spans∈G (As ⊗max Ds) ⊂ A⊗max D.

In both cases as → as ⊗ Vs for as ∈ As .
Let ι be the inclusion of C ∗E (G ) into D. Then we get a map

id ⊗ ι : A⊗max C
∗
E (G )→ A⊗max D.

Problem

id ⊗ ι is not injective in general, since we are in ⊗max-land.
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G is amenable at infinity

Theorem (BEW)

If G is amenable at infinity then the crossed-product functor
(A, α) 7→ Aoα,UCBr(G) G is naturally isomorphic to the reduced
crossed product (A, α) 7→ Aoα,r G, and is consequently strictly
smaller than the full crossed product functor.
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Exotic Tensor Products

We have seen that we needed two kinds of coactions:
Regular coactions:

δ : A→ M̃(A⊗min C
∗(G )).

and R-coactions:

δ : A→ M̃(A⊗max C
∗(G )).

Maybe we also need C ∗-algebras between A⊗max C
∗(G ) and

A⊗min C
∗(G ), or in general C ∗-algebras between A⊗max B and

A⊗min B.
So out there is probably an unexplored forest of exotic tensor
products waiting to be discovered.
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More questions

Other objects worth studying are the algebras

UCBr (G ) ort G

which for G discrete are the Roe-algebras

`∞(G ) ort G .
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Brown-Guentner approach

Start with a G -invariant subspace D of B(G ).

Consider D-representations of G , i.e., representations for
which a dense set of vectors gives coefficient functions in D.

Form a quotient C ∗D,BG (G ) of C ∗(G ) by the intersection of
the kernels of all D-representations.

(fine print: we need the weak* closure of D to contain Br (G).)
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Examples

Example

If D = B(G ), then C ∗D,BG (G ) = C ∗(G ).

Example

If D = Cc(G ) ∩ B(G ) or Lp(G ) ∩ B(G ) for 1 ≤ p ≤ 2, then
C ∗D,BG (G ) = C ∗r (G ).

Example

(Okayasu-Higson-Ozawa)
If G = Fn then Dp = `p(G ) ∩ B(G ) for 2 < p <∞ gives a
continuum of pair-wise distinct quotients C ∗Dp ,BG

(G ).
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Compare with our approach

Again start with a G -invariant subspace D of B(G ).

The preannihilator ⊥D is an ideal of C ∗(G ) (by G -invariance).

The quotient C ∗D,KLQ(G ) := C ∗(G )/⊥D is an exotic group
C ∗-algebra.

Clearly C ∗D,BG (G ) = C ∗D,KLQ(G ), right?
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The P(G ) question

This leads to:

Theorem (BEW)

If G is a locally compact group, D a nonzero G-invariant ideal of
B(G ), and D = span{D ∩ P(G )}, then C ∗D,BG (G ) = C ∗D,KLQ(G ).

Again, for our purposes it would be enough to know that
span{D ∩ P(G )} is weak* dense in D.

But, somehow surprising, the question as stated seems to be open
— at least to nonexperts like us.
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Partial results

Proposition (Buss-Echterhoff-Willett, KLQ)

The P(G ) question has a positive answer if D is norm closed in
B(G ), so in particular for D = C0(G ) ∩ B(G ).

By far the most important case of the P(G ) question that still
eludes us is:

Question (The Lp question)

For 2 < p <∞, is

Lp(G ) ∩ B(G ) = span{Lp(G ) ∩ P(G )}?

Surely someone must know the answer to this?
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